КОТЛЯРОВА Оксана Валерьевна

УСОВЕРШЕНСТВОВАНИЕ ЭЛЕМЕНТОВ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ РЕГЕНЕРАНТОВ ДЛЯ СОЗДАНИЯ УДВОЕННЫХ ГАПЛОИДОВ МОРКОВИ (Daucus carota L.)

Специальность: 06.01.05. - селекция и семеноводство сельскохозяйственных растений

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в Государственном научном учреждении Всероссийский научно-исследовательский институт овощеводства Россельхозакадемии в 2002-2009 гг.

Научный руководитель:

доктор биологических наук, профессор

Поляков Алексей Васильевич

Официальные оппоненты:

доктор сельскохозяйственных наук, профессор

Леунов Владимир Иванович ГНУ ВНИИО Россельхозакадемии

доктор биологических наук, доцент

Соловьев Александр Александрович РГАУ-МСХА им. К.А. Тимирязева

Ведущая организация: ГНЦ ВНИИ растениеводства им. Н.И. Вавилова

Защита диссертации состоится « $\underline{10}$ » ноября 2010 года в $\underline{12}$ часов на заседании диссертационного совета Д 006.022.01 во Всероссийском научно-исследовательском институте овощеводства Россельхозакадемии по адресу: 140153 Московская обл., Раменский район, д. Верея, строение 500, ВНИИО.

Факс (49646) 2-43-64

E-mail: vniioh@yandex.ru, www.vniioh.ru

С диссертацией можно ознакомиться в библиотеке ГНУ Всероссийского научно-исследовательского института овощеводства.

Автореферат разослан – « » октября 2010 года

Ученый секретарь диссертационного совета

Л.Н. Прянишникова

1. ОБЩАЯ ХАРАКТЕРИСТИКАРАБОТЫ

Актуальность темы. Для создания высокоурожайных, выровненных по комплексу признаков гибридов F_1 моркови, разных сроков созревания, необходим новый линейный материал. На создание стерильных и фертильных линий традиционным способом необходимо потратить не один десяток лет. Поэтому перед селекционерами стоит задача изучить и разработать эффективные способы получения гомозиготного материала.

Одним из перспективных направлений биотехнологии является получение и использование гаплоидов и удвоенных гаплоидов. Использование методов индуцированного апомиксиса, андро- и гиногенеза позволяет в относительно короткие сроки получать генетически константные растения, которые представляют большой интерес для получения родительских линий и использования их в гетерозисной селекции (Поляков А.В., 2000;Пролетова Н.В., Поляков А.В., Лошакова Н.И., Каранова С.Л., 2003; 2004). Другие методы получения гаплоидов менее изучены и их практическое использование в селекции носит ограниченный характер.

Морковь — является модельным объектом в биотехнологических исследованиях и многие методы регенерации растений из различных тканей и органов хорошо разработаны (Тюкавин Г.Б., 2007; Калашникова Е.А., и др., 2006). Однако ряд вопросов, связанных с получением растений-регенерантов из репродуктивных органов, остаётся недостаточно изученным для практического использования в селекционном процессе.

Цель и задачи исследований.

Целью данной работы являлось — усовершенствование элементов технологии получения регенерантов для создания удвоенных гаплоидов моркови.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Уточить способы идентификации гаплоидов моркови;
- 2. Изучить полиэмбрионию для получения гаплоидов моркови;
- 3. Получить семена моркови при индуцированном апомиксисе;
- 4. Усовершенствовать элементы технологии получения удвоенных гаплоидов моркови в эмбриокультуре;
- 5. Усовершенствовать элементы технологии получения андро и гиногенных растений моркови;
- 6. Сравнить методы получения растений-регенерантов для создания удвоенных гаплоидов (полиэмбриония, метод гаплоиндукции, андрогенез, и гиногенез) и выявить наиболее эффективный для использования в селекционном процессе.

Объект исследований – методы получения удвоенных гаплоидов моркови культура пыльников, семяпочек, индуцированный апомиксис, эмбриокультура, полиэмбриония.

Предмет исследований — пыльники, семяпочки, зародыши, семена линий, сортов и гибридов F_1 моркови столовой (*Daucus carota* L.).

Научная новизна работы. В результате проведенных исследований усовершенствованы элементы технологии получения регенерантов из репродуктивных органов для создания удвоенных гаплоидов моркови.

Показано, что у гаплоидов число замыкающих клеток устьиц в поле зрения микроскопа при увеличении15х40 составляет 14-16 шт., у диплоидов-9-12 шт., число хлоропластов в замыкающих клетках устьиц у гаплоидов - 6-9 шт., у диплоидов- 12-14 шт.

Впервые показано, что частота появления полиэмбриональных семян у моркови зависит от сортообразца и колеблется от 0 до 0,25%, а частота появления близнецовых гаплоидовот 0 до 0,05%.

Опыление цветков моркови, характеризующихся петалоидным типом стерильности, пыльцой сельдерея сорта Белоснежный и петрушки сорта Алба на фоне обработки растений a-НУК в концентрации 0,075 г/л и гиббереллина в концентрации 0,025 г/л приводит к образованиию апомиктичных семян, всхожесть которых варьирует от 9% до 21%, что позволяет получить до 0,15% жизнеспособных апомиктичных растений.

Показано, что культивирование апомиктичных зародышей *in vitro* позволяет получить жизнеспособные растения, которые составляют от 0,5% до 2,3% от числа культивируемых зародышей.

Культивирование семяпочек на среде MSm, включающей полный состав питательных веществ и 2,4-Д в концентрации 0,2 мг/л, позволяет получить от 1,6% до 6,7% эмбриогенных образований.

Практическая ценность исследований. Проведено сравнение эффективности способов получения регенерантов для создания удвоенных гаплоидов моркови: андрогенез, гиногенез, эмбриокультура. Определены условия культивирования от введения эксплантов *in vitro* до укоренения побегов и адаптации растений-регенерантов к условиям *in vivo*.

Установлена частота образования близнецовых гаплоидов моркови, которая составляет от 0 до 0.05%.

Выявлено, что линия 8В характеризуется высокой андрогенной, сорт Manufuruji long — гиногенной способностью, у которых частота образования эмбриоидов соответственно составляет 18,9% и 43,5%.

Установлено, что использование среды MS, содержащей половинную дозу макро- и микроэлементов, ИМК в концентрации $0.5\,$ мг/л, сахарозу - $10\,$ г/л и агар - $7\,$ г/л в зависимости от типа экспланта позволяет укоренить от 79.8% до 77.5% побегов.

Обоснование и достоверность научных положений. Исследования выполнены по методикам, рекомендованным научными учреждениям страны. Все выводы и предложения подтверждены экспериментальными исследованиями, статистической обработкой полученных данных.

Апробация работы. Основные результаты экспериментальной работы по диссертации, выводы и предложения были доложены или представлены на Международной научно-практической конференции «Приоритетные направления в селекции и семеноводстве сельскохозяйственных растений в

XXI веке» (Москва, 2003г.), Международной научно — практической конференции «Биотехнология овощных, цветочных и малораспространенных культур» (Москва, 2004 г.), III Московском международном конгрессе «Биотехнология: состояние и перспективы развития» (Москва, 2005), III Российской научно-практической конференции «Актуальные проблемы инноваций с нетрадиционными природными ресурсами и создание функциональных продуктов» (Москва, 2005 г.), а также на заседаниях методической комиссии селекции, семеноводству и биотехнологии ГНУ ВНИИО Россельхозакадемии (2002-2009 гг.)

Основные положения диссертации, выносимые на защиту:

- полиэмбриония у моркови как источник получения гаплоидов;
- уточнённые условия получения апомиктичных семян;
- оптимизированные условия получения апомиктичных растений моркови в эмбриокультуре;
- уточнённые условия культуры пыльников моркови;
- уточнённые условия культуры семяпочек моркови.

Объем и структура работы. Диссертационная работа состоит из введения, 3 глав, выводов, заключения, предложений для использования в селекционной практике, списка использованной литературы содержащего 181 наименование, в том числе 91 иностранных авторов. Изложена диссертация на 165 страницах машинописного текста, содержит 37 таблиц, иллюстрирована 23 рисунками и 5 приложениями.

2.УСЛОВИЯ И МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Исследования проведены в ГНУ Всероссийский научно-исследовательский институт овощеводства Россельхозакадемии (ГНУ ВНИИО), расположенном в Раменском районе, Московской области в период $2002-2009\ \mbox{гг}$.

Исследования проводили на 16 сортообразцах моркови, полученных из отдела селекции. В качестве гаплоиндуктора использовали сорта и гибриды сельдерея и петрушки, полученные из отдела семеноводства ГНУ ВНИИО.

Полевые опыты проводили в соответствие с Методикой опытного дела в овощеводстве и бахчеводстве (под ред. Белика В.Ф., 1992).

Исследования в условиях *in vitro* проводили в соответствии с Методическими указаниями по культуре ткани и органов в селекции растений (Бутенко Р. Г., Хромова Л. М., Седнина Г.А., 1984; Поляков А.В., 2005).

Изучение содержания сухого вещества, витамина С, сахаров в потомствах растений-регенерантов проводили по методике И.М. Скурихина, В.А. Тутельяна, (1998).

Цитологический анализ растений-регенерантов проводили по методике В.А. Пухальского, А.А. Соловьёва, Е.Д. Бадаева и др. (2004).

Математическую обработку экспериментальных данных проводили на основе методов математической статистики по методикам, опубликованным у Б.А. Доспехова (1979).

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Идентификация гаплоидов моркови. Цитологический метод идентификации гаплоидов сложен и трудоемок, поэтому для облегчения работы применяют косвенные методы, позволяющие из большей по численности группы растений выделить немногочисленную группу предполагаемых гаплоидов, и тем самым, сократить количество образцов, подвергаемых цитологическому анализу.

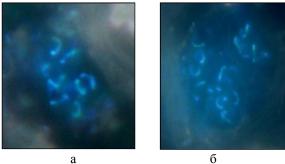


Рисунок 1 –а – гаплоидный (n=9), б - диплоидный набор хромосом (2n=18) растений моркови столовой линии 1238 В, полученных методом полиэмбрионии.

Проведенные нами цитологические исследования показали, что у гаплоидных растений число хромосом равно 9, число устьиц составляет - 14-16 шт., хлоропластов - 6-9 шт., а у диплоидов число хромосом равно 18 шт., устьиц - 9-12 шт., хлоропластов 12-14 шт. в замыкающих клетках устьиц в поле зрения микроскопа при увеличении 15х40 (рис. 1, табл. 1).

Таблица 1 - Цито – анатомическая характеристика гаплоидов и диплоидов моркови (*Daucus carota* L.).

Признаки	Гаплоиды	Диплоиды
Число хромосом, шт.	9	18
Число устьиц в поле зрения микроскопа (15 x 40), шт.	14-16	9-12
Число хлоропластов в замыкающих клетках устьиц, шт.	6-9	12-14
Стерильность пыльцы, %	100	0,2-8,0

Рисунок 2 - Хлоропласты в замыкающих клетках устьиц линии 1238 В: а – гаплоид (8 шт.), б – диплоид (13 шт.)

Полиэмбриония у моркови как источник получения гаплоидов. Анализ первоисточников не выявил информациио полиэмбрионии у моркови. В связи с этим нами изучено 15 образцов этого вида культурного растенияморкови и установлено, что образование полиэмбриональных семян в значительной степени обусловлено их генотипом. Наибольшее число близнецовых проростков обнаружено у линии REW (0,26 %) и образца Ранний цилиндрический 2 (0,25 %).

Проведённый цито — анатомический анализ близнецов позволил выявить среди близнецовых пар 18 гаплоидов, что всреднем составило 0,05%. Наибольшая частота образования близнецовых гаплоидов была у линии REW, которая составила 0,17% (табл. 2).

Таблица 2 - Частота встречаемости полиэмбрионии у моркови (*Daucus carota* L.) 2004 - 2005 гг.

Сорт, линия,	Изуче-	Обна	аружено пар	в т.ч.	близнецо-	
гибрид F_1	но про-	близнецов,			вых	
	рост-		всего	га	гаплоидов	
	ков, шт.	шт.	% <u>+</u> Sp	шт.	% <u>+</u> Sp	
Леандр	4055	2	0,05 <u>+</u> 0,035	0	0	
НИИОХ 336	2280	1	0,04 <u>+</u> 0,04	0	0	
Витаминная 6	1467	0	0	0	0	
Лосиноостровская 13	1910	0	0	0	0	
Нюанс	823	1	0,12 <u>+</u> 0,12	0	0	
1238 П	3148	2	0,06 <u>+</u> 0,04	0	0	
1238 B	4795	8	0,17 <u>+</u> 0,06	5	0,10 <u>+</u> 0,05	
8B	2395	3	0,13 <u>+</u> 0,07	1	0,04 <u>+</u> 0,04	
1268 C	1758	2	0,11 <u>+</u> 0,08	0	0	
1268 B	1806	2	0,11 <u>+</u> 0,08	0	0	
Crookham company	783	0	0	0	0	
REW	2334	6 0,26 <u>+</u> 0,11		4	0,17 <u>+</u> 0,09	
Ранний круглый 1	1154	2	0,17 <u>+</u> 0,12	1	0,09 <u>+</u> 0,09	
Ранний цилиндрический 2	1574	4	0,25 <u>+</u> 0,13	2	0,13 <u>+</u> 0,09	
Топаз F ₁	5056	10	0,20 <u>+</u> 0,06	5	0,10 <u>+</u> 0,04	

Исследования показали, что частота образования близнецовых гаплоидных растений с учетом их выживаемости составляла от 0 (линия 8В и образцы Ранний круглый 1, Ранний цилиндрический 2) до 0.06% (F_1 Tonas).

Индуцированный апомиксис. В наших опытах при обработке растений регуляторами роста и опылении растений стерильных линий моркови пыльцой сельдерея и петрушки наблюдалось образование апомиктичных семян. Наибольшее количество таких семян завязывалось при опылении пыльцой сельдерея сорта Белоснежный и пыльцой петрушки сорта Алба в сочетании с обработкой материнских растений а-НУК в концентрации 0,075г/л совместно с гиббереллином в концентрации 0,025г/л (табл.3).

Таблица 3 -Характеристика семян моркови, полученных при индуцированном апомиксисе (2002-2005 гг.)

		Варианты опыта								
Показатель	контроль	а-НУК+ гиббереллин	опыление пыльцой сельдерея сорта Белоснежный	опыление пыльцой сельдерея сорта Белоснежный +a-НУК+гиббереллин	опыление пыльцой петрушки сорта Алба	опыление пыльцой петрушки сорта Алба + а-НУК+гибберел лин				
		Ли	ния 1238 Г	Ι						
Число опыленных цветков, шт.	87300	89100	89950	87700	86500	87300				
Получено семян, шт.	0	3128	2778	3317	527	1330				
Завязываемость семян, %	0	3,5	3,1	3,8	0,6	1,5				
Масса семян, г	0	0,77	0,91	1,11	0,09	0,29				
Масса 1000 семян, г	0	0,25	0,33	0,33	0,17	0,22				
		Ли	ния 1585 Г	I						
Число опыленных цветков, шт.	84200	83750	84670	83160	84580	83930				
Получено семян, шт.	0	440	115	1080	35	1270				
Завязываемость семян, %	0	0,5	0,1	1,3	0,04	1,5				
Масса семян, г	0	0,55	0,12	1,04	0,08	1,69				
Масса 1000 семян, г	0	1,25	1,04	0,96	1,29	1,33				

Получение апомиктичных растений моркови в эмбриокультуре. Использование эмбриокультуры для получения растений-регенерантов моркови *in vitro* может быть альтернативным способом сохранения слабожизнеспособных, в том числе гаплоидных зародышей.

Для изучения эффективности эмбриокультуры *in vitro* вводили 10, 20, 30, 40, 50 суточные апомиктичные зародыши, полученные от опыления стерильных линий моркови 1238 П и Γ -67 пыльцой сельдерея сорта Белоснежный. Проведенные нами исследования показали, что наибольшее количество (от 3% до 6,7%) прорастающих апомиктичных зародышей было получено при культивировании 50 суточных зародышей (табл. 4).

Таблица 4 - Влияние возраста зародышей на образование жизнеспособных апомиктов моркови (среда MSm, содержащая 2,4-Д в концентрации 0,2 мг/л, 2006-2007 гг.)

Линия	Возраст зародышей, сутки	Число куль- тивируемых зародышей,	Образовалось жизнеспособных зародышей		Образовалось растущих зародышей	
		ШТ.	шт.	% <u>+</u> Sp	шт.	% <u>+</u> Sp
	10	52	10	19,2 <u>+</u> 5,5	0	0
	20	79	24	30,4 <u>+</u> 5,2	0	0
1238 П	30	90	30	33,3 <u>+</u> 5,0	0	0
	40	30	11	30,0 <u>+</u> 8,4	1	3,3 <u>+</u> 3,3
	50	30	13	43,3 <u>+</u> 9,0	2	6,7 <u>+</u> 4,6
	10	50	9	18,0 <u>+</u> 5,4	0	0
	20	77	24	31,2 <u>+</u> 5,3	0	0
Γ – 67	30	90	30	33,3 <u>+</u> 5,0	0	0
	40	28	10	35,7 <u>+</u> 9,0	0	0
	50	32	10	31,3 <u>+</u> 8,2	1	3,1 <u>+</u> 3,0

Известно, что успешное культивирование незрелых семян и зародышей растений во многом зависит от состава питательной среды. В работе мы использовали среды, широко применяемые для культуры незрелых зародышей растений: MSm (Masuda K., Kikuta Y., 1981), Norstog (Norstog K., 1973). Monnier (Monnier M., 1978) и Gamborg B_5 (Gamborg O.L., 1984).

Проведенные исследования показали, что наибольшее количество прорастающих зародышей образовывалось на среде MSm и составляло от 26,0% до 35,0% (табл. 5).

Таблица 5 — Эффективность культивирования апомиктичных зародышей на питательных средах, содержащих 2,4—Д в концентрации-0,2 мг/л (2006-2007 гг.)

		Число	Число ра	астущих эксплантов
Линия	Среда	культивируемых эксплантов, шт.	шт.	% <u>+</u> Sp
1238 П	MSm	38	10	26,3 <u>+</u> 7,1
	Norstog	42	7	16,7 <u>+</u> 5,8
	Monnier	40	7	20,0 <u>+</u> 6,3
	Gamborg	42	5	11,9 <u>+</u> 5,0
	MSm	36	11	30,6 <u>+</u> 7,7
Γ - 67	Norstog	42	10	23,8 <u>+</u> 6,6
	Monnier	36	8	22,2 <u>+</u> 7,0
	Gamborg	44	11	25,0 <u>+</u> 6,5
	MSm	20	7	35,0 <u>+</u> 10,7
1585 П	Norstog	22	6	27,3 <u>+</u> 9,5
130311	Monnier	20	6	30,0 <u>+</u> 10,2
	Gamborg	24	4	16,6 <u>+</u> 7,6

При культивировании апомиктичных зародышей моркови *in vitro* немаловажное значение имеет подбор регуляторов роста и их концентрации. В своей работе мы изучали влияние 2,4-Д, 2ip и тидиазурона в различных концентрациях. Проведенные исследования показали, что наибольшее количество растущих апомиктичных зародышей получено в вариантах при использовании 2,4-Д в концентрации 0,2 мг/л и составляло от 11,0% до 23,0%.

Проведенные исследования показали, что использование эмбриокультуры позволяет получить в зависимости от образца жизнеспособные растения от 0,48% (линия $1238~\Pi$) до 2,26% (линия $1585~\Pi$) (табл. 6).

Таблица 6 – Эффективность получения растений-регенерантов в эмбриокультуре (2006-2007 гг.)

Линия	Проанализиро-	Получено		Выжило		Образовалось
	вано незрелых	регене	рантов	растений		жизнеспособных
	зародышей,	шт.	%	шт.	%	апомиктов,%
	ШТ.	ш1.	70	ш1.	/0	
1238 П	825	19	2,3	7	36,8	0,85
Γ-67	827	15	1,8	4	26,7	0,48
1585 П	266	22	8,3	6	27,3	2,26

Получение регенерантов в культуре пыльников и семяпочек. Ряд авторов отмечает положительный эффект действия различных биологически активных веществ и физических факторов на эффективность культуры пыльников (Тураев А., и др. 1996; Поляков А.В., 2000).

В наших опытах с целью повышения пролиферирующей способности пыльников и семяпочек использовали трёхкратную обработку донорных растений с интервалом в трое суток регуляторами роста: цитодеф в концентрации $0.2\,$ мл/л, эмистим- $0.0001\,$ мл/л, гиббереллин – $0.025\,$ г/л и a-HУК – $0.075\,$ г/л (табл. 7).

Таблица 7- Влияние регуляторов роста на эмбриогенез моркови в культуре пыльников и семяпочек (2003-2005 гг.)

Сорт,	Регулятор	Концент-		но, шт.		ю эмбрио-
линия	роста	рация			генных, % <u>+</u> Sp	
			пыль-	семя-	пыль-	семя-
			ников	почек	ников	почек
	контроль	=	1573	747	0,9 <u>+</u> 0,2	22,2 <u>+</u> 1,5
Лосиноост-	цитодеф	0,2 мл/л	580	242	5,5 <u>+</u> 0,9	39,7 <u>+</u> 3,1
ровская 13	ЭМИСТИМ	0,0001 мл/л	1204	698	0	13,8 <u>+</u> 1,3
ровская 13	а-НУК +	0,075 мг/л	1119	643	15.04	11 5 1 2
	гиббереллин	0,025мг/л	1119	043	1,5 <u>+</u> 0,4	11,5 <u>+</u> 1,3
	контроль	-	1608	765	0,9 <u>+</u> 0,2	25,8 <u>+</u> 1,6
	цитодеф	0,2 мл/л	709	802	7,0 <u>+</u> 0,9	45,1 <u>+</u> 1,8
Нюанс	эмистим	0,0001 мл/л	1412	338	3,9 <u>+</u> 0,5	18,9 <u>+</u> 4,5
	а-НУК +	0,075 мг/л	951	678	0	12,5 <u>+</u> 1,3
	гиббереллин	0,025мг/л	931	078	U	12,5 <u>+</u> 1,5
	контроль	-	978	544	0,6+0,2	28,1 <u>+</u> 1,9
Monufumii	цитодеф	0,2 мл/л	485	251	6,4 <u>+</u> 1,1	25,1 <u>+</u> 2,7
Monufuruji long	ЭМИСТИМ	0,0001 мл/л	396	243	4,3 <u>+</u> 1,0	21,4 <u>+</u> 2,6
long	а-НУК +	0,075 мг/л	401	205	0	22.0+2.0
	гиббереллин	0,025мг/л	401	203	U	22,9 <u>+</u> 2,9
	контроль	-	1428	810	0,9 <u>+</u> 0,2	22,5 <u>+</u> 1,5
	цитодеф	0,2 мл/л	495	248	4,2 <u>+</u> 0,9	21,8 <u>+</u> 2,6
8B	эмистим	0,0001 мл/л	946	681	0	19,8 <u>+</u> 1,5
	а-НУК+	0,075 мг/л	826	576	0	28,6 <u>+</u> 1,9
	гиббереллин	0,025мг/л	620	370	U	20,0 <u>1</u> 1,9

Отмечено, что наилучшие результаты получены при обработке донорных растений цитодефом. Эмбриогенные экспланты при использовании этого вещества составляли от 4,0% до 7,0% в культуре пыльников и от 23,0% до 45,0% в культуре семяпочек.

Наиболее высоким эмбриогенным потенциалом в культуре пыльников характеризовалась линия 8В (19,0%),в культуре семяпочек - сорт Manufuruji long (44,0%) (табл.8).

Таблица 8 – Эффективность каллусо- и эмбриогенеза моркови в культуре пыльников и семяпочек (2002-2004 гг.)

Сорт,	Число	Число куль-						
линия		уемых, т.	эмбриогенных		каллусогенных			
	пыль-	семя-	пыль-	семя-	пыль-	семя-		
	ников	почек	ников	почек	ников	почек		
Лосиноост- ровская 13	287	97	3,5 <u>+</u> 1,1	0	14,6 <u>+</u> 2,	0		
Нюанс	305	104	3,0 <u>+</u> 1,0	18,3 <u>+</u> 3,8	1,3 <u>+</u> 0,7	1,9 <u>+</u> 1,3		
НИИИОХ 336	297	107	0	0	0	0		
Manufuruji long	325	85	2,8 <u>+</u> 0,9	43,5 <u>+</u> 5,4	1,5 <u>+</u> 0,7	3,5 <u>+</u> 2,0		
8B	317	48	18,9 <u>+</u> 2,2	8,3 <u>+</u> 1,4	2,2 <u>+</u> 0,8	0		
1268 B	219	83	0	0	0	0		

Как отмечалось ранее, одним из важных факторов *in vitro* технологий является состав питательной среды и концентрация ее компонентов.

В наших опытах отмечено, что культивирование пыльников и семяпочек на среде MSm, концентрация которой была снижена на 25%, 50% и 75% сопровождалось снижением морфогенетической активности. Наиболее эффективной была среда MSm, содержащая полный состав макро- и микроэлементов, позволившая получить от 4,0% до 6,0% эмбриогенных пыльников и от 2,0% (сорт Нюанс) до 7,0% (линия 8В) эмбриогенных семяпочек.

Температурный стресс может применяться в качестве стимулирующего фактора для повышения эффективности каллусо- и эмбриогенеза. При использовании метода андрогенеза *in vitro* используют предобработку как низкой положительной температурой (Dunwell J.M., 1985; Муромовцев Г.С. и др., 1990), так и высокой (Bajaj Y.P.S., 1983).

Исследования, проведенные Г.Б. Тюкавиным (2007) по культивированию изолированных пыльников моркови при низкой и высокой температуре, эффекта не дали. Но при этом отмечено, что холодовая предобработка соцветий способствовала активизации каллусо- и эмбриогенеза в культуре пыльников.

В наших опытах изучено влияние пониженной температуры $(+5^{\circ}C)$ на эмбриогенную активность моркови при воздействии ею в течение 12, 24, 36 и 48 часов.

Таблица 9 - Влияние пониженной температуры $(+5^{\circ}C)$ на эмбриогенную активность пыльников и семяпочек (2003-2005 гг.)

Сорт, линия	Продолжи- тельность	Число кул мых	ьтивируе- , шт.	Полу эмбриоген	чено ных, % <u>+</u> Sp
	воздействия	пыль-	семя-	пыль-	семя-
		ников	почек	ников	почек
Лосино-	контроль*	310	372	6,1 <u>+</u> 1,4	10,8 <u>+</u> 1,6
островская	12	267	236	5,2 <u>+</u> 1,4	11,9 <u>+</u> 2,1
13	24	235	206	4,3 <u>+</u> 1,3	7,3 <u>+</u> 1,2
	36	258	208	4,7 <u>+</u> 1,3	0
	48	320	ı	8,1 <u>+</u> 1,5	-
Нюанс	контроль*	292	401	9,2 <u>+</u> 1,7	8,0 <u>+</u> 1,4
	12	305	336	8,2 <u>+</u> 1,6	11,6 <u>+</u> 1,7
	24	287	306	5,9 <u>+</u> 1,4	2,9 <u>+</u> 0,9
	36	426	294	0	6,1 <u>+</u> 1,4
	48	328	ı	13,1 <u>+</u> 1,9	-
Monufuruji	контроль*	503	244	8,7 <u>+</u> 1,3	8,6 <u>+</u> 1,8
long	12	433	215	8,3 <u>+</u> 1,3	10,2 <u>+</u> 2,0
	24	328	190	7,3 <u>+</u> 1,4	8,4 <u>+</u> 2,0
	36	492	178	5,3 <u>+</u> 1,0	0
	48	342	ı	10,8 <u>+</u> 1,7	-
8B	контроль*	541	283	5,2 <u>+</u> 1,0	2,5 <u>+</u> 0,9
	12	308	151	4,5 <u>+</u> 1,2	4,0 <u>+</u> 1,6
	24	253	136	0	0
	36	226	110	0	0
	48	327	-	9,8 <u>+</u> 1,6	=

Примечание: *контроль - культивирование пыльников при температуре $25^{0}\mathrm{C}$.

У сорта Нюанс и линии 8B отмечено увеличение частоты образования эмбриогенных пыльников от 8,0% до 13,0% при воздействии пониженной температурой в течение 48 часов.

В культуре семяпочек у сорта Нюанс получены положительные результаты при воздействии пониженной температурой в течение 12 часов. Частота образования эмбриогенных семяпочек в этом варианте составила 11,6% (табл. 9). У других сортообразцов существенное влияние пониженной температуры на пыльники и семяпочки не отмечено.

Укоренение. Для укоренения побегов часто используют безгормональные агаризованные питательные среды, у которых содержание макро- и микроэлементов снижено в два раза, а концентрация сахарозы составляет 1% (Полякова А.В., 2000, 2007, 2010). Эти условия способствуют хорошей укореняемости и интенсивному развитию корневой системы растений-регенерантов.

Наши исследования показали, что наибольшее количество укоренившихся побегов в культуре пыльников (79,8)% и семяпочек (77,5)% на среде, где содержание макро- и микроэлементов было снижено в два раза (½ MS), содержание индолилмасляной кислоты (ИМК) составляло 0,5 мг/л, сахарозы - $10 \, \text{г/л}$ (табл. 100).

Применение индолилмасляной кислоты (ИМК) в концентрации 1,0 мг/л приводило к образованию каллуса на основаниях побегов и витрификации растений — регенерантов.

Таблица 10- Укоренение побегов моркови на среде½ MS

Концентра-	Число у	кореняе-	Укоренилось побегов				
ция ИМК в	мых поб	егов, шт.	Ш	T.	% <u>+</u>	% <u>+</u> Sp	
среде, мг/л	пыль-	семя-	пыль-	семя-	пыль-	семя-	
	ников	почек	ников	почек	ников	почек	
0 (контроль)	117	120	49	40	41,9 <u>+</u> 4,6	33,3 <u>+</u> 4,3	
0,1	95	106	47	45	49,5 <u>+</u> 5,1	42,4 <u>+</u> 4,8	
0,25	102	91	67	67 57		62,6 <u>+</u> 5,1	
0,5	84	71	62 55		79,8 <u>+</u> 5,3	77,5 <u>+</u> 4,9	
1,0	90	98	59	68	65,5 <u>+</u> 5,0	69,4 <u>+</u> 4,7	

Проведенные исследования по культивированию пыльников и семяпочек, а затем образовавшихся на их основе эмбриоидов, почек и побегов позволили получить растения-регенеранты, которые с использованием влажной камеры были адаптированы к обычным условиям (рис. 2). Лучше всего прошли адаптацию растения—регенеранты сорта Manufuruji long, полученные в культуре пыльников, и сорта Нюанс, полученные в культуре семяпочек, их доля составила по 94,0%.

В течение вегетации часть растений погибла и к уборке из регенерантов, полученных в культуре пыльников, выжило от 50% (линия 8B) до 79% (сорт Нюанс), а в культуре семяпочек - от 53% (сорт Manufuruji long) до 73% (сорт Нюанс) (табл. 11).

Таблица 11 - Адаптация растений-регенерантов

	Tuosingu II Tiguniugiii puoteinii perenepuntes							
Сорт, линия	расте	чено ений- рантов, т.	Число адаптирован- ных <i>in viv</i> o растений %±Sp					
	1*	2*	1*	2*	1*	2*		
Нюанс	85	97	92,9 <u>+</u> 2,8	93,8 <u>+</u> 2,4	78,8 <u>+</u> 4,4	73,1 <u>+</u> 4,5		
Manufuruji long	32	229	93,8 <u>+</u> 4,3 72,9 <u>+</u> 2,9		65,6 <u>+</u> 8,4	52,8+3,3		
8B	285	74	88,4 <u>+</u> 1,9	88,4 <u>+</u> 1,9 82,4 <u>+</u> 4,4 49,5 <u>+</u>		63,5 <u>+</u> 5,6		

Примечание: *1 – культура пыльникв; *2 – культура семяпочек.

Рисунок 2 - Растения-регенеранты моркови, полученные в культуре пыльников

Анализ результатов показал, что количество жизнеспособных растений-регенерантов в пересчете от числа введенных в культуру эксплантов в зависимости от образца, составило в культуре пыльников от 0,3% (Manufuruji long) до 1,7% (линия 8B), а в культуре семяпочек - от 0,87% (линия 8B) до 3,65% (Manufuruji long) (табл.12, 13).

Таблица 12 - Эффективность получения растений-регенерантов моркови в культуре пыльников

Сорт, линия	Проанали- зировано- пыльни-	Получ расте				Образовалось жизнеспособных растений от числа
	ков, шт.	шт.	%	шт.	%	культивируемых пыльников,%
Нюанс	8962	85	0,95	67	78,8	0,8
Manufuruji long	6151	32	0,52	21	65,6	0,3
8B	8087	285	3,52	141	49,5	1,7

Таблица 13 - Эффективность получения растений-регенерантов моркови в культуре семяпочек

Сорт, линия	Проанали- зировано	Получено растений		Выжило растений		Образовалось жизнеспособных	
	семяпо- чек, шт.	шт.	%	шт.	%	растений от числа культивируемых семяпочек, %	
Нюанс	6104	97	1,59	71	73,2	1,2	
Manufuruji long	3313	229	6,91	121	52,8	3,65	
8B	5378	74	1,38	47	63,5	0,87	

Проведённый цитологический анализ растений-регенерантов, полученных при индуцированном апомиксисе, эмбриокультуре, а также в культуре пыльников и семяпочек показал, что все они являются удвоенными гаплоидами (табл. 14).

Таблица 14 - Цитологический анализ растений

Вариант	Получено	Проанали-	Обнаружено				
	регене- рантов,	зировано регенерантов	удвоенных гаплоидов			лоидов	
	шт.	всего, шт.	ШТ.	% <u>+</u> Sp	ШТ.	% <u>+</u> Sp	
Индуциро- ванный апомиксис	337	64	18	19,0 <u>+</u> 2,1	0	0	
Эмбрио- культура	17	15	15	88,2 <u>+</u> 7,8	0	0	
Культура пыльников	229	77	77	33,6 <u>+</u> 3,1	0	0	
Культура семяпочек	239	82	82	34,3 <u>+</u> 3,1	0	0	

Сравнительный анализ эффективности способов получения удвоенных гаплоидов моркови показал, что культура семяпочек является наиболее перспективной для использования в селекционном процессе. В зависимости от условий культивирования и сортообразца этот метод позволяет получать удвоенные гаплоиды с частотой 0,9-3,7% при минимальном риске появления мутаций (табл.15).

Таблица 15– Эффективность методов получения удвоенных гаплоидов моркови

Способ получения	Частота образования				
	гаплоидов	удвоенных			
		гаплоидов			
Полиэмбриония	0 - 0,06	0			
Индуцированный апомиксис	0	0 - 0,15			
Эмбриокультура	0	0,48 - 2,26			
Культура пыльников	0	0,34 - 1,74			
Культура семяпочек	0	0,87 - 3,65			

В литературных источниках мало встречается данных об изменении морфологических признаков полученных удвоенных гаплоидов по сравнению с исходным образцом. В некоторых источниках отмечено, что удвоенные гаплоиды не уступают, а иногда и превосходят исходные формы по хозяйственно ценным признакам (Поляков А.В., 2000).

Морфологический анализ показал, что ряд потомств растенийрегенерантов, полученных различными способами и в результате самоопыления, характеризовалось большей выравненностью по сравнению с исходными образцами (табл. 16).

Таблица 16 - Характеристика линий первого поколения R_1 по морфологическим признакам

Линия	Изуче- но рас- тений, шт.	Окраска непло, %		Поверхность корнеплода, %		Форма Форма гол корнеплода, корнеплод			Размер головки корнеплода, %		
1	2	3		4		5		6		7	
		•	Ин	ідуцированн	ый апом	иксис					
1238 П (кон- троль)	14	оранж.	100	гладкая неровная	79* 21*	конич. уд.конич.	79* 21*	округлая сл.вогнут.	86* 14*	маленькая средняя	57* 43*
R ₂₆	14	оранж. желор.	93* 7*	гладкая неровная	93* 7*	конич. уд.конич.	79* 21*	округлая сл.вогнут.	93* 7*	маленькая средняя	50* 50*
R ₂₈	14	оранж.	100	гладкая неровная	86* 14*	конич. уд.конич.	86* 14*	округлая сл.вогнут.	93* 7*	маленькая средняя	57* 43*
1585 П (кон- троль)	15	оранж.	100	гладкая неровная	87* 13*	конич. уд.конич. цилиндр.	80* 7* 13*	округлая сл.вогнут. вогнутая	80* 7* 13*	маленькая средняя	60* 40*
R ₁₄	15	оранж. желор.	93* 7*	гладкая неровная	93* 7*	конич. уд.конич. цилиндр.	79* 7* 13*	округлая сл.вогнут. вогнутая.	87* 13* 0	маленькая средняя	53* 47*
R ₁₇	15	оранж.	100	гладкая неровная	87* 13*	конич. уд.конич. цилиндр.	87* 0 13*	округлая сл.вогнут. вогнутая	80* 7* 13*	маленькая средняя	60* 40*
	Культура пыльников										
Нюанс (кон- троль)	12	оранж.	100	гладкая неровная	83* 17*	цилиндр. конич.	83* 17*	округлая сл.вогнут.	92* 8*	маленькая средняя	58* 42*
R ₈	12	оранж.	100	гладкая неровная	92* 8*	цилиндр. конич.	92* 8*	округлая сл.вогнут.	83* 17*	маленькая средняя	50* 50*

Продолжение таблицы 17

1	2	3		4		5		6	1	7	
R ₁₂	12	оранж.	100	гладкая неровная	83* 17*	цилиндр. конич.	83* 17*	округлая сл.вогнут.	92* 8*	маленькая средняя	58* 42*
8 В (кон- троль)	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	86* 14*	округлая сл.вогнут.	93* 7*	маленькая средняя	57* 43*
R ₂₆	14	оранж.	100	гладкая неровная	93* 7*	цилиндр. конич.	86* 14*	округлая сл.вогнут.	93* 7*	маленькая средняя	50* 50*
R ₂₉	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	93* 7*	округлая сл.вогнут.	93* 7*	маленькая средняя	57* 43*
				Культура	семяпоч	ек					
Нюанс (кон- троль)	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	93* 7*	округлая сл.вогнут.	86* 14*	маленькая средняя	64* 36*
R ₁₄	14	оранж.	100	гладкая неровная	93* 7*	цилиндр. конич.	93* 7*	округлая сл.вогнут.	93* 7*	маленькая средняя	57* 43*
R ₂₄	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	86* 14*	округлая сл.вогнут.	93* 7*	маленькая средняя	57* 43*
8 В (кон- троль)	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	86* 14*	округлая сл.вогнут.	93* 7*	маленькая средняя	64* 36*
R ₂₈	14	оранж.	100	гладкая неровная	93* 7*	цилиндр. конич.	93* 7*	округлая сл.вогнут.	93* 7*	маленькая средняя	50* 50*
R ₃₇	14	оранж.	100	гладкая неровная	86* 14*	цилиндр. конич.	93* 7*	округлая сл.вогнут.	93* 7*	маленькая средняя	64* 36*

^{*}Примечание: доля корнеплодов, характеризующихся данными признаками.

Проведенный химический анализ корнеплодов показал, что потомство растения-регенеранта номера 90 линии 1238 П, полученного при индуцированном апомиксисе и 105 линии 8В, полученного в культуре пыльников, выделились по содержанию каротиноидов и сухого вещества. Эти показатели были выше, чем у исходных форм на 14,7% и 10,9% по каротиноидам и на 2,4% и 2,2% по сухому веществу (табл. 17).

Таблица 17 – Содержание каротиноидов и сухого вещества в корнеплодах R₁ (n=12)

	Содержани	е каро-	Содержание сухого вещества, %		
Сорт, линия	размах ва- рьирова- ния	Х ср.	размах ва- рьирова- ния	Х ср.	
Линия 1238 В, контроль	12,016,6	14,3	10,712,7	11,7	
1238 П - 90 + пыльца сель- дерея сорта Белоснежный	24,034,0	29,0	12,216,0	14,1	
1238 П - 99+гиббереллин 0,025 г/л, НУК- 0,075 г/л	11,520,3	15,9	10,412,2	11,3	
Лосиноостровская13, контроль	18,022,5	20,2	9,111,5	10,3	
Лосиноостровская 13 - 101 (культура семяпочек)	14,520,0	17,3	9,812,5	12,5	
Лосиноостровская 13 - 103 (культура семяпочек)	11,518,0	14,7	9,414,0	11,7	
Линия 8В, контроль	9,016,8	12,9	9,711,1	10,4	
8В - 105 (культура пыльни- ков)	17,030,4	23,8	10,214,8	12,5	
8В - 107 (культура пыльни- ков)	12,520,5	16,5	8,110,7	9,4	

При этом потомство регенеранта 90 линии1238 П, полученного методом индуцированного апомиксиса, на 1,5% превышало исходную форму по содержанию аскорбиновой кислоты и дисахаров (табл. 18). Потомств регенерантов, превосходящих исходные формы по содержанию глюкозы, выявлено не было.

Таблица 18 - Содержание углеводов и аскорбиновой кислоты в корнеплодах R_1 (n=12)

Вариант	Аскорби- новая кислота, мг/%	Дисахара, %	Глюкоза, г/100 г
Линия 1238 В (контроль)	2,0	2,5	1,3
1238 П - 90 + пыльца сельдерея Белоснежный.	3,4	4,0	1,0
1238 П- 99+ гиббереллин 0,025 г/л,НУК – 0,075г/л.	1,3	3,2	1,3
Лосиноостровская 13 (контроль)	2,4	3,6	0,7
Лосиноостровская 13 101(культура семяпочек)	2,7	3,7	0,5
Лосиноостровская 13 103 (культура семяпочек)	1,9	3,4	1,0
Линия 8В (контроль)	3,4	1,0	1,1
8В - 105 (культура пыльников)	4,1	2,9	0,2
8В - 107 (культура пыльников)	2,8	3,7	0,6

ВЫВОДЫ

- 1. Из изученных способов получения удвоенных гаплоидов моркови (культура пыльников, семяпочек, эмбриокультура, апомиксис) наиболее эффективным является культура семяпочек. В зависимости от условий культивирования и образца он позволяет получать удвоенные гаплоиды с частотой 0,9-3,7%.
- 2. Полиэмбриония у моркови может служить источником получения гаплоидов, частота образования которых в зависимости от образца составляет от 0 до 0,17%, а с учётом их выживаемости от 0 до 0,06%. Наибольшая частота полиэмбриональных гаплоидов обнаружена у линий REW и F_1 Топаз.
- 3. Опыление цветков моркови пыльцой сельдерея сорта Белоснежный и петрушки сорта Алба на фоне обработки растений раствором а-НУК в концентрации 0.075~г/л и гиббереллина 0.025~г/л сопровождается формированием апомиктичных семян. Всхожесть семян варьирует от 9% до 21%, что позволяет получить до 0.15% жизнеспособных апомиктичных растений. Наиболее отзывчивой является линия Γ 67.
- 4.Оптимизированы условия, влияющие на выход апомиктичных растений моркови в эмбриокультуре:
 - оптимальный возраст введения зародышей в культуру in vitro составляет 50 суток;

- культивирование зародышей на среде MSm в зависимости от линии позволяет получить от 26,3% до 35,0% растущих эксплантов;
- метод эмбриокультуры позволяет получить апомиктичные жизнеспособные растения от 0.5% (линия $1238\ \Pi$) до 2.3% (линия $1585\ \Pi$).
- 5. Уточнены условия, влияющие на выход растений регенерантов в культуре пыльников:
 - обработка донорных растений регуляторами роста позволяет получить от 4,2% до 9,9% эмбриогенных и от 6,5% до 41,2% каллусогенных эксплантов в зависимости от сорта;
 - выявлены образцы, характеризующиеся различной андрогенетической способностью. Наиболее высоким эмбриогенным потенциалом характеризуется линия 8В, у которой частота образования эмбриогенных эксплантов составляет 19,0%.
 - культивирование пыльников на среде MSm, включающей полный состав питательных веществ, 2,4-Д в концентрации 0,2 мг/л, 2 ір 2 мг/л позволяет получать до 4,5% эмбриогенных эксплантов;
 - укоренение побегов на среде MS, содержащей половинную концентрацию макро- и микроэлементов, ИМК в концентрации 0,5 мг/л, сахарозу 10 г/л и агар 7 г/л позволяет получать до 79,8% укоренившихся побегов. Выживаемость растений *in vivo* в зависимости от образца составляет 49,5% 78,8%;
 - метод культуры пыльников в зависимости от образца позволяет получить от 0,34% (Manufurujilong) до 1,74% (линия 8В) жизнеспособных растений-регенерантов.
- 6. Оптимизированы условия, влияющие на выход растенийрегенерантов моркови в культуре семяпочек:
 - обработка донорных растений регуляторами роста позволяет получать от 11,5% до 45,1% эмбриогенных эксплантов в зависимости от образца и варианта обработки;
 - выделены образцы, характеризующиеся различной гиногенной способностью. Наиболее высоким эмбриогенным потенциалом характеризуется линия 8В (8,3%) и сорт Manufuruji long(43,5 %);
 - культивирование семяпочек на среде MSm, включающей полный состав питательных веществ, 2,4-Д в концентрации 0,2 мг/л позволяет получить от 1,6% до 6,7% эмбриогенных образований;
 - укоренение побегов моркови на среде MS, содержание макро- и микроэлементов в которой снижено в два раза, ИМК в концентрации 0,5 мг/л, сахарозу -10 г/л и агар - 7 г/л позволяет получать 77,5% укоренившихся побегов. Выживаемость растений-регенерантов в условиях in vivo составляет от 52,8% до 73,1% в зависимости от образца.

Предложения для использования в селекционной практике

- 1. Для получения растений-регенерантов в культуре семяпочек:
- проводить обработку донорных растений раствором цитодефа в концентрации 0,2 мл/л;
- семяпочки культивировать на среде MSm, включающей полный состав питательных веществ и 2,4-Д в концентрации 0,2 мг/л;
- укоренение побегов осуществлять на питательной среде MS, где содержание макро- и микроэлементов снижено в два раза, концентрация ИМК составляет 0,5 мг/л, сахарозы 10 г/л, агар 7 г/л.
- 2. Идентификацию гаплоидных растений (n=9) следует проводить по числу устьиц (12-14 шт. в поле зрения микроскопа при увеличении 15х40) на нижней стороне листа и количеству хлоропластов (6-9 шт.) в замыкающих клетках устьиц.

Список опубликованных работ по теме диссертации

По результатам исследований по теме диссертации опубликовано 6 работ, в т.ч. одна в журнале «Картофель и овощи», рекомендованном ВАК $P\Phi$.

- 1. Ильченко О.В. Оценка генотипов моркови различного географического происхождения на устойчивость к фузариозу и альтернариозу в условиях искусственного инфекционного фона / Т.Н. Лебедева, Н.В. Ипатова, А.В. Поляков, О.В. Ильченко//Материалы Всероссийского совещания: «Современные системы защиты растений от болезней и перспективы использования достижений биотехнологии и генной инженерии», 16-18 июля 2003 г. М.: ВНИИФ, 2003.- С. 61 63.
- 2. Ильченко О.В. Андро- и гиногенез моркови (*Daucus carota* L.) /А.В. Поляков, О.В. Ильченко // Международная научно-практическая конференция «Приоритетные направления в селекции и семеноводстве сельско-хозяйственных растений в XXI веке», Москва, 2003. С. 420-422.
- IlchenkoO.V. Andro- and gynogenesis of carrot (*Daucus carota* L.) / A.V. Poliakov, O.V. Ilchenko// «International scientific practical conference «Perspective directions in breeding and seed production of agricultural plants in XXI centure» Moscow, 2003. P. 420-422.
- 3. Ilchenko O.V. Production of andro- and gynogenic plants of carrot (Daucuscarota L.) / A.V. Poliakov, O.V. Ilchenko //Proceedings of International Scientific Practical Conference "Biotechnology of vegetable, flower and not widely spread crops" (March, 22 25, 2004). Moscow: Institute of Vegetable crops, 2004. P. 146 150.
- 4. Ильченко О.В. Получение регенерантов сельдерейных (Аріасеае), тыквенных (Сисигвітасеае), капустных (Brassicaceae) и ряда цветочных культур *in vitro* / А.В. Поляков, И.И. Тарасенков, О.И. Федоришина, А.А. Ткачева,

Н.Н., О.В. Ильченко, Ананьина, Н.Н. Лебедева, М.И. Иванова, Т.В. Ларионова, И.Н. Боровикова //ІІІ Московскиймеждународный конгресс "Биотехнология: состояние и перспективы развития". - Москва (14 - 18 марта 2005 г.), 2005. - С. 286-287.

Ilchenko O.V. Obtaining regenerants of Apiaceae, Cucurbitaceae, Brassicaceae and some flower crops *in vitro* / A.V. Poliakov, I.I. Tarasenkov, O.I. Fedorishyna, A.A. Tkacheva, O.V. Ilchenko, N.N. Ananina, N.N. Lebedeva, M.I. Ivanova, T.V. Larionova, I.N. Borovikova //III Moscow International Congress "Biotechnology: state of the art and prospects of development".- Moscow (March, 14 – 18, 2005), 2005. - P. 286-287.

- 5. Ильченко О.В. Распространение полиэмбрионии у моркови (*Daucus carota* L.) / А.В. Поляков, Т.Э. Клыгина, О.В. Ильченко //III Российская научно-практическая конференция "Актуальные проблемы инноваций с нетрадиционными природными ресурсами и создания функциональных продуктов". Москва: РАЕН, (6 7 июня 2005 г.), 2005. С. 40 41.
- 6. Ильченко О.В. Получение апомиктичных семян моркови. /О.В. Ильченко //Картофель и овощи. 2007. №6. С.31.